1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
//! Cryptographic key module.

use std::collections::BTreeMap;
use std::fmt;
use std::io::Cursor;

use anyhow::{ensure, Context as _, Result};
use base64::Engine as _;
use num_traits::FromPrimitive;
use pgp::composed::Deserializable;
pub use pgp::composed::{SignedPublicKey, SignedSecretKey};
use pgp::ser::Serialize;
use pgp::types::{KeyTrait, SecretKeyTrait};
use tokio::runtime::Handle;

use crate::config::Config;
use crate::constants::KeyGenType;
use crate::context::Context;
use crate::log::LogExt;
use crate::pgp::KeyPair;
use crate::tools::{self, time_elapsed, EmailAddress};

/// Convenience trait for working with keys.
///
/// This trait is implemented for rPGP's [SignedPublicKey] and
/// [SignedSecretKey] types and makes working with them a little
/// easier in the deltachat world.
pub(crate) trait DcKey: Serialize + Deserializable + KeyTrait + Clone {
    /// Create a key from some bytes.
    fn from_slice(bytes: &[u8]) -> Result<Self> {
        Ok(<Self as Deserializable>::from_bytes(Cursor::new(bytes))?)
    }

    /// Create a key from a base64 string.
    fn from_base64(data: &str) -> Result<Self> {
        // strip newlines and other whitespace
        let cleaned: String = data.split_whitespace().collect();
        let bytes = base64::engine::general_purpose::STANDARD.decode(cleaned.as_bytes())?;
        Self::from_slice(&bytes)
    }

    /// Create a key from an ASCII-armored string.
    ///
    /// Returns the key and a map of any headers which might have been set in
    /// the ASCII-armored representation.
    fn from_asc(data: &str) -> Result<(Self, BTreeMap<String, String>)> {
        let bytes = data.as_bytes();
        Self::from_armor_single(Cursor::new(bytes)).context("rPGP error")
    }

    /// Serialise the key as bytes.
    fn to_bytes(&self) -> Vec<u8> {
        // Not using Serialize::to_bytes() to make clear *why* it is
        // safe to ignore this error.
        // Because we write to a Vec<u8> the io::Write impls never
        // fail and we can hide this error.
        let mut buf = Vec::new();
        self.to_writer(&mut buf).unwrap();
        buf
    }

    /// Serialise the key to a base64 string.
    fn to_base64(&self) -> String {
        base64::engine::general_purpose::STANDARD.encode(DcKey::to_bytes(self))
    }

    /// Serialise the key to ASCII-armored representation.
    ///
    /// Each header line must be terminated by `\r\n`.  Only allows setting one
    /// header as a simplification since that's the only way it's used so far.
    // Since .to_armored_string() are actual methods on SignedPublicKey and
    // SignedSecretKey we can not generically implement this.
    fn to_asc(&self, header: Option<(&str, &str)>) -> String;

    /// The fingerprint for the key.
    fn fingerprint(&self) -> Fingerprint {
        Fingerprint::new(KeyTrait::fingerprint(self))
    }
}

pub(crate) async fn load_self_public_key(context: &Context) -> Result<SignedPublicKey> {
    let public_key = context
        .sql
        .query_row_optional(
            "SELECT public_key
             FROM keypairs
             WHERE id=(SELECT value FROM config WHERE keyname='key_id')",
            (),
            |row| {
                let bytes: Vec<u8> = row.get(0)?;
                Ok(bytes)
            },
        )
        .await?;
    match public_key {
        Some(bytes) => SignedPublicKey::from_slice(&bytes),
        None => {
            let keypair = generate_keypair(context).await?;
            Ok(keypair.public)
        }
    }
}

pub(crate) async fn load_self_secret_key(context: &Context) -> Result<SignedSecretKey> {
    let private_key = context
        .sql
        .query_row_optional(
            "SELECT private_key
             FROM keypairs
             WHERE id=(SELECT value FROM config WHERE keyname='key_id')",
            (),
            |row| {
                let bytes: Vec<u8> = row.get(0)?;
                Ok(bytes)
            },
        )
        .await?;
    match private_key {
        Some(bytes) => SignedSecretKey::from_slice(&bytes),
        None => {
            let keypair = generate_keypair(context).await?;
            Ok(keypair.secret)
        }
    }
}

pub(crate) async fn load_self_secret_keyring(context: &Context) -> Result<Vec<SignedSecretKey>> {
    let keys = context
        .sql
        .query_map(
            r#"SELECT private_key
               FROM keypairs
               ORDER BY id=(SELECT value FROM config WHERE keyname='key_id') DESC"#,
            (),
            |row| row.get::<_, Vec<u8>>(0),
            |keys| keys.collect::<Result<Vec<_>, _>>().map_err(Into::into),
        )
        .await?
        .into_iter()
        .filter_map(|bytes| SignedSecretKey::from_slice(&bytes).log_err(context).ok())
        .collect();
    Ok(keys)
}

impl DcKey for SignedPublicKey {
    fn to_asc(&self, header: Option<(&str, &str)>) -> String {
        // Not using .to_armored_string() to make clear *why* it is
        // safe to ignore this error.
        // Because we write to a Vec<u8> the io::Write impls never
        // fail and we can hide this error.
        let headers = header.map(|(key, value)| {
            let mut m = BTreeMap::new();
            m.insert(key.to_string(), value.to_string());
            m
        });
        let mut buf = Vec::new();
        self.to_armored_writer(&mut buf, headers.as_ref())
            .unwrap_or_default();
        std::string::String::from_utf8(buf).unwrap_or_default()
    }
}

impl DcKey for SignedSecretKey {
    fn to_asc(&self, header: Option<(&str, &str)>) -> String {
        // Not using .to_armored_string() to make clear *why* it is
        // safe to do these unwraps.
        // Because we write to a Vec<u8> the io::Write impls never
        // fail and we can hide this error.  The string is always ASCII.
        let headers = header.map(|(key, value)| {
            let mut m = BTreeMap::new();
            m.insert(key.to_string(), value.to_string());
            m
        });
        let mut buf = Vec::new();
        self.to_armored_writer(&mut buf, headers.as_ref())
            .unwrap_or_default();
        std::string::String::from_utf8(buf).unwrap_or_default()
    }
}

/// Deltachat extension trait for secret keys.
///
/// Provides some convenience wrappers only applicable to [SignedSecretKey].
pub(crate) trait DcSecretKey {
    /// Create a public key from a private one.
    fn split_public_key(&self) -> Result<SignedPublicKey>;
}

impl DcSecretKey for SignedSecretKey {
    fn split_public_key(&self) -> Result<SignedPublicKey> {
        self.verify()?;
        let unsigned_pubkey = SecretKeyTrait::public_key(self);
        let signed_pubkey = unsigned_pubkey.sign(self, || "".into())?;
        Ok(signed_pubkey)
    }
}

async fn generate_keypair(context: &Context) -> Result<KeyPair> {
    let addr = context.get_primary_self_addr().await?;
    let addr = EmailAddress::new(&addr)?;
    let _guard = context.generating_key_mutex.lock().await;

    // Check if the key appeared while we were waiting on the lock.
    match load_keypair(context, &addr).await? {
        Some(key_pair) => Ok(key_pair),
        None => {
            let start = tools::Time::now();
            let keytype = KeyGenType::from_i32(context.get_config_int(Config::KeyGenType).await?)
                .unwrap_or_default();
            info!(context, "Generating keypair with type {}", keytype);
            let keypair = Handle::current()
                .spawn_blocking(move || crate::pgp::create_keypair(addr, keytype))
                .await??;

            store_self_keypair(context, &keypair, KeyPairUse::Default).await?;
            info!(
                context,
                "Keypair generated in {:.3}s.",
                time_elapsed(&start).as_secs(),
            );
            Ok(keypair)
        }
    }
}

pub(crate) async fn load_keypair(
    context: &Context,
    addr: &EmailAddress,
) -> Result<Option<KeyPair>> {
    let res = context
        .sql
        .query_row_optional(
            "SELECT public_key, private_key
             FROM keypairs
             WHERE id=(SELECT value FROM config WHERE keyname='key_id')",
            (),
            |row| {
                let pub_bytes: Vec<u8> = row.get(0)?;
                let sec_bytes: Vec<u8> = row.get(1)?;
                Ok((pub_bytes, sec_bytes))
            },
        )
        .await?;

    Ok(if let Some((pub_bytes, sec_bytes)) = res {
        Some(KeyPair {
            addr: addr.clone(),
            public: SignedPublicKey::from_slice(&pub_bytes)?,
            secret: SignedSecretKey::from_slice(&sec_bytes)?,
        })
    } else {
        None
    })
}

/// Use of a key pair for encryption or decryption.
///
/// This is used by `store_self_keypair` to know what kind of key is
/// being saved.
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum KeyPairUse {
    /// The default key used to encrypt new messages.
    Default,
    /// Only used to decrypt existing message.
    ReadOnly,
}

/// Store the keypair as an owned keypair for addr in the database.
///
/// This will save the keypair as keys for the given address.  The
/// "self" here refers to the fact that this DC instance owns the
/// keypair.  Usually `addr` will be [Config::ConfiguredAddr].
///
/// If either the public or private keys are already present in the
/// database, this entry will be removed first regardless of the
/// address associated with it.  Practically this means saving the
/// same key again overwrites it.
///
/// [Config::ConfiguredAddr]: crate::config::Config::ConfiguredAddr
pub(crate) async fn store_self_keypair(
    context: &Context,
    keypair: &KeyPair,
    default: KeyPairUse,
) -> Result<()> {
    let mut config_cache_lock = context.sql.config_cache.write().await;
    let new_key_id = context
        .sql
        .transaction(|transaction| {
            let public_key = DcKey::to_bytes(&keypair.public);
            let secret_key = DcKey::to_bytes(&keypair.secret);

            let is_default = match default {
                KeyPairUse::Default => true,
                KeyPairUse::ReadOnly => false,
            };

            // `addr` and `is_default` written for compatibility with older versions,
            // until new cores are rolled out everywhere.
            // otherwise "add second device" or "backup" may break.
            // moreover, this allows downgrades to the previous version.
            // writing of `addr` and `is_default` can be removed ~ 2024-08
            let addr = keypair.addr.to_string();
            transaction
                .execute(
                    "INSERT OR REPLACE INTO keypairs (public_key, private_key, addr, is_default)
                     VALUES (?,?,?,?)",
                    (&public_key, &secret_key, addr, is_default),
                )
                .context("Failed to insert keypair")?;

            if is_default {
                let new_key_id = transaction.last_insert_rowid();
                transaction.execute(
                    "INSERT OR REPLACE INTO config (keyname, value) VALUES ('key_id', ?)",
                    (new_key_id,),
                )?;
                Ok(Some(new_key_id))
            } else {
                Ok(None)
            }
        })
        .await?;

    if let Some(new_key_id) = new_key_id {
        // Update config cache if transaction succeeded and changed current default key.
        config_cache_lock.insert("key_id".to_string(), Some(new_key_id.to_string()));
    }

    Ok(())
}

/// Saves a keypair as the default keys.
///
/// This API is used for testing purposes
/// to avoid generating the key in tests.
/// Use import/export APIs instead.
pub async fn preconfigure_keypair(context: &Context, addr: &str, secret_data: &str) -> Result<()> {
    let addr = EmailAddress::new(addr)?;
    let secret = SignedSecretKey::from_asc(secret_data)?.0;
    let public = secret.split_public_key()?;
    let keypair = KeyPair {
        addr,
        public,
        secret,
    };
    store_self_keypair(context, &keypair, KeyPairUse::Default).await?;
    Ok(())
}

/// A key fingerprint
#[derive(Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
pub struct Fingerprint(Vec<u8>);

impl Fingerprint {
    /// Creates new 160-bit (20 bytes) fingerprint.
    pub fn new(v: Vec<u8>) -> Fingerprint {
        debug_assert_eq!(v.len(), 20);
        Fingerprint(v)
    }

    /// Make a hex string from the fingerprint.
    ///
    /// Use [std::fmt::Display] or [ToString::to_string] to get a
    /// human-readable formatted string.
    pub fn hex(&self) -> String {
        hex::encode_upper(&self.0)
    }
}

impl fmt::Debug for Fingerprint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Fingerprint")
            .field("hex", &self.hex())
            .finish()
    }
}

/// Make a human-readable fingerprint.
impl fmt::Display for Fingerprint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Split key into chunks of 4 with space and newline at 20 chars
        for (i, c) in self.hex().chars().enumerate() {
            if i > 0 && i % 20 == 0 {
                writeln!(f)?;
            } else if i > 0 && i % 4 == 0 {
                write!(f, " ")?;
            }
            write!(f, "{c}")?;
        }
        Ok(())
    }
}

/// Parse a human-readable or otherwise formatted fingerprint.
impl std::str::FromStr for Fingerprint {
    type Err = anyhow::Error;

    fn from_str(input: &str) -> Result<Self> {
        let hex_repr: String = input
            .to_uppercase()
            .chars()
            .filter(|&c| c.is_ascii_hexdigit())
            .collect();
        let v: Vec<u8> = hex::decode(&hex_repr)?;
        ensure!(v.len() == 20, "wrong fingerprint length: {}", hex_repr);
        let fp = Fingerprint::new(v);
        Ok(fp)
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use once_cell::sync::Lazy;

    use super::*;
    use crate::test_utils::{alice_keypair, TestContext};

    static KEYPAIR: Lazy<KeyPair> = Lazy::new(alice_keypair);

    #[test]
    fn test_from_armored_string() {
        let (private_key, _) = SignedSecretKey::from_asc(
            "-----BEGIN PGP PRIVATE KEY BLOCK-----

xcLYBF0fgz4BCADnRUV52V4xhSsU56ZaAn3+3oG86MZhXy4X8w14WZZDf0VJGeTh
oTtVwiw9rVN8FiUELqpO2CS2OwS9mAGMJmGIt78bvIy2EHIAjUilqakmb0ChJxC+
ilSowab9slSdOgzQI1fzo+VZkhtczvRBq31cW8G05tuiLsnDSSS+sSH/GkvJqpzB
BWu6tSrMzth58KBM2XwWmozpLzy6wlrUBOYT8J79UVvs81O/DhXpVYYOWj2h4n3O
60qtK7SJBCjG7vGc2Ef8amsrjTDwUii0QQcF+BJN3ZuCI5AdOTpI39QuCDuD9UH2
NOKI+jYPQ4KB8pA1aYXBZzYyjuwCHzryXXsXABEBAAEAB/0VkYBJPNxsAd9is7fv
7QuTGW1AEPVvX1ENKr2226QH53auupt972t5NAKsPd3rVKVfHnsDn2TNGfP3OpXq
XCn8diZ8j7kPwbjgFE0SJiCAVR/R57LIEl6S3nyUbG03vJI1VxZ8wmxBTj7/CM3+
0d9/HY+TL3SMS5DFhazHm/1vrPbBz8FiNKtdTLHniW2/HUAN93aeALq0h4j7LKAC
QaQOs4ej/UeIvL7dihTGc2SwXfUA/5BEPDnlrBVhhCZhWuu3dF7nMMcEVP9/gFOH
khILR01b7fCfs+lxKHKxtAmHasOOi7xp26O61m3RQl//eid3CTdWpCNdxU4Y4kyp
9KsBBAD0IMXzkJOM6epVuD+sm5QDyKBow1sODjlc+RNIGUiUUOD8Ho+ra4qC391L
rn1T5xjJYExVqnnL//HVFGyGnkUZIwtztY5R8a2W9PnYQQedBL6XPnknI+6THEoe
Od9fIdsUaWd+Ab+svfpSoEy3wrFpP2G8340EGNBEpDcPIzqr6wQA8oRulFUMx0cS
ko65K4LCgpSpeEo6cI/PG/UNGM7Fb+eaF9UrF3Uq19ASiTPNAb6ZsJ007lmIW7+9
bkynYu75t4nhVnkiikTDS2KOeFQpmQbdTrHEbm9w614BtnCQEg4BzZU43dtTIhZN
Q50yYiAAhr5g+9H1QMOZ99yMzCIt/oUEAKZEISt1C6lf8iLpzCdKRlOEANmf7SyQ
P+7JZ4BXmaZEbFKGGQpWm1P3gYkYIT5jwnQsKsHdIAFiGfAZS4SPezesfRPlc4RB
9qLA0hDROrM47i5XK+kQPY3GPU7zNjbU9t60GyBhTzPAh+ikhUzNCBGj+3CqE8/3
NRMrGNvzhUwXOunNBzxoZWxsbz7CwIkEEAEIADMCGQEFAl0fg18CGwMECwkIBwYV
CAkKCwIDFgIBFiEEaeHEHjiV97rB+YeLMKMg0aJs7GIACgkQMKMg0aJs7GKh1gf+
Jx9A/7z5A3N6bzCjolnDMepktdVRAaW2Z/YDQ9eNxA3N0HHTN0StXGg55BVIrGZQ
2MbB++qx0nBQI4YM31RsWUIUfXm1EfPI8/07RAtrGdjfCsiG8Fi4YEEzDOgCRgQl
+cwioVPmcPWbQaZxpm6Z0HPG54VX3Pt/NXvc80GB6++13KMr+V87XWxsDjAnuo5+
edFWtreNq/qLE81xIwHSYgmzJbSAOhzhXfRYyWz8YM2YbEy0Ad3Zm1vkgQmC5q9m
Ge7qWdG+z2sYEy1TfM0evSO5B6/0YDeeNkyR6qXASMw9Yhsz8oxwzOfKdI270qaN
q6zaRuul7d5p3QJY2D0HIMfC2ARdH4M+AQgArioPOJsOhTcZfdPh/7I6f503YY3x
jqQ02WzcjzsJD4RHPXmF2l+N3F4vgxVe/voPPbvYDIu2leAnPoi7JWrBMSXH3Y5+
/TCC/I1JyhOG5r+OYiNmI7dgwfbuP41nDDb2sxbBUG/1HGNqVvwgayirgeJb4WEq
Gpk8dznS9Fb/THz5IUosnxeNjH3jyTDAL7c+L5i2DDCBi5JixX/EeV1wlH3xLiHB
YWEHMQ5S64ASWmnuvzrHKDQv0ClwDiP1o9FBiBsbcxszbvohyy+AmCiWV/D4ZGI9
nUid8MwLs0J+8jToqIhjiFmSIDPGpXOANHQLzSCxEN9Yj1G0d5B89NveiQARAQAB
AAf/XJ3LOFvkjdzuNmaNoS8DQse1IrCcCzGxVQo6BATt3Y2HYN6V2rnDs7N2aqvb
t5X8suSIkKtfbjYkSHHnq48oq10e+ugDCdtZXLo5yjc2HtExA2k1sLqcvqj0q2Ej
snAsIrJwHLlczDrl2tn612FqSwi3uZO1Ey335KMgVoVJAD/4nAj2Ku+Aqpw/nca5
w3mSx+YxmB/pwHIrr/0hfYLyVPy9QPJ/BqXVlAmSyZxzv7GOipCSouBLTibuEAsC
pI0TYRHtAnonY9F+8hiERda6qa+xXLaEwj1hiorEt62KaWYfiCC1Xr+Rlmo3GAwV
08X0yYFhdFMQ6wMhDdrHtB3iAQQA04O09JiUwIbNb7kjd3TpjUebjR2Vw5OT3a2/
4+73ESZPexDVJ/8dQAuRGDKx7UkLYsPJnU3Lc2IT456o4D0wytZJuGzwbMLo2Kn9
hAe+5KaN+/+MipsUcmC98zIMcRNDirIQV6vYmFo6WZVUsx1c+bH1EV7CmJuuY4+G
JKz0HMEEANLLWy/9enOvSpznYIUdtXxNG6evRHClkf7jZimM/VrAc4ICW4hqICK3
k5VMcRxVOa9hKZgg8vLfO8BRPRUB6Bc3SrK2jCKSli0FbtliNZS/lUBO1A7HRtY6
3coYUJBKqzmObLkh4C3RFQ5n/I6cJEvD7u9jzgpW71HtdI64NQvJBAC+88Q5irPg
07UZH9by8EVsCij8NFzChGmysHHGqeAMVVuI+rOqDqBsQA1n2aqxQ1uz5NZ9+ztu
Dn13hMEm8U2a9MtZdBhwlJrso3RzRf570V3E6qfdFqrQLoHDdRGRS9DMcUgMayo3
Hod6MFYzFVmbrmc822KmhaS3lBzLVpgkmEeJwsB2BBgBCAAgBQJdH4NfAhsMFiEE
aeHEHjiV97rB+YeLMKMg0aJs7GIACgkQMKMg0aJs7GLItQgAqKF63+HwAsjoPMBv
T9RdKdCaYV0MvxZyc7eM2pSk8cyfj6IPnxD8DPT699SMIzBfsrdGcfDYYgSODHL+
XsV31J215HfYBh/Nkru8fawiVxr+sJG2IDAeA9SBjsDCogfzW4PwLXgTXRqNFLVr
fK6hf6wpF56STV2U2D60b9xJeSAbBWlZFzCCQw3mPtGf/EGMHFxnJUE7MLEaaTEf
V2Fclh+G0sWp7F2ZS3nt0vX1hYG8TMIzM8Bj2eMsdXATOji9ST7EUxk/BpFax86D
i8pcjGO+IZffvyZJVRWfVooBJmWWbPB1pueo3tx8w3+fcuzpxz+RLFKaPyqXO+dD
7yPJeQ==
=KZk/
-----END PGP PRIVATE KEY BLOCK-----",
        )
        .expect("failed to decode");
        let binary = DcKey::to_bytes(&private_key);
        SignedSecretKey::from_slice(&binary).expect("invalid private key");
    }

    #[test]
    fn test_asc_roundtrip() {
        let key = KEYPAIR.public.clone();
        let asc = key.to_asc(Some(("spam", "ham")));
        let (key2, hdrs) = SignedPublicKey::from_asc(&asc).unwrap();
        assert_eq!(key, key2);
        assert_eq!(hdrs.len(), 1);
        assert_eq!(hdrs.get("spam"), Some(&String::from("ham")));

        let key = KEYPAIR.secret.clone();
        let asc = key.to_asc(Some(("spam", "ham")));
        let (key2, hdrs) = SignedSecretKey::from_asc(&asc).unwrap();
        assert_eq!(key, key2);
        assert_eq!(hdrs.len(), 1);
        assert_eq!(hdrs.get("spam"), Some(&String::from("ham")));
    }

    #[test]
    fn test_from_slice_roundtrip() {
        let public_key = KEYPAIR.public.clone();
        let private_key = KEYPAIR.secret.clone();

        let binary = DcKey::to_bytes(&public_key);
        let public_key2 = SignedPublicKey::from_slice(&binary).expect("invalid public key");
        assert_eq!(public_key, public_key2);

        let binary = DcKey::to_bytes(&private_key);
        let private_key2 = SignedSecretKey::from_slice(&binary).expect("invalid private key");
        assert_eq!(private_key, private_key2);
    }

    #[test]
    fn test_from_slice_bad_data() {
        let mut bad_data: [u8; 4096] = [0; 4096];
        for (i, v) in bad_data.iter_mut().enumerate() {
            *v = (i & 0xff) as u8;
        }
        for j in 0..(4096 / 40) {
            let slice = &bad_data.get(j..j + 4096 / 2 + j).unwrap();
            assert!(SignedPublicKey::from_slice(slice).is_err());
            assert!(SignedSecretKey::from_slice(slice).is_err());
        }
    }

    #[test]
    fn test_base64_roundtrip() {
        let key = KEYPAIR.public.clone();
        let base64 = key.to_base64();
        let key2 = SignedPublicKey::from_base64(&base64).unwrap();
        assert_eq!(key, key2);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 2)]
    async fn test_load_self_existing() {
        let alice = alice_keypair();
        let t = TestContext::new_alice().await;
        let pubkey = load_self_public_key(&t).await.unwrap();
        assert_eq!(alice.public, pubkey);
        let seckey = load_self_secret_key(&t).await.unwrap();
        assert_eq!(alice.secret, seckey);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 2)]
    async fn test_load_self_generate_public() {
        let t = TestContext::new().await;
        t.set_config(Config::ConfiguredAddr, Some("alice@example.org"))
            .await
            .unwrap();
        let key = load_self_public_key(&t).await;
        assert!(key.is_ok());
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 2)]
    async fn test_load_self_generate_secret() {
        let t = TestContext::new().await;
        t.set_config(Config::ConfiguredAddr, Some("alice@example.org"))
            .await
            .unwrap();
        let key = load_self_secret_key(&t).await;
        assert!(key.is_ok());
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 2)]
    async fn test_load_self_generate_concurrent() {
        use std::thread;

        let t = TestContext::new().await;
        t.set_config(Config::ConfiguredAddr, Some("alice@example.org"))
            .await
            .unwrap();
        let thr0 = {
            let ctx = t.clone();
            thread::spawn(move || {
                tokio::runtime::Runtime::new()
                    .unwrap()
                    .block_on(load_self_public_key(&ctx))
            })
        };
        let thr1 = {
            let ctx = t.clone();
            thread::spawn(move || {
                tokio::runtime::Runtime::new()
                    .unwrap()
                    .block_on(load_self_public_key(&ctx))
            })
        };
        let res0 = thr0.join().unwrap();
        let res1 = thr1.join().unwrap();
        assert_eq!(res0.unwrap(), res1.unwrap());
    }

    #[test]
    fn test_split_key() {
        let pubkey = KEYPAIR.secret.split_public_key().unwrap();
        assert_eq!(pubkey.primary_key, KEYPAIR.public.primary_key);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 2)]
    async fn test_save_self_key_twice() {
        // Saving the same key twice should result in only one row in
        // the keypairs table.
        let t = TestContext::new().await;
        let ctx = Arc::new(t);

        let nrows = || async {
            ctx.sql
                .count("SELECT COUNT(*) FROM keypairs;", ())
                .await
                .unwrap()
        };
        assert_eq!(nrows().await, 0);
        store_self_keypair(&ctx, &KEYPAIR, KeyPairUse::Default)
            .await
            .unwrap();
        assert_eq!(nrows().await, 1);
        store_self_keypair(&ctx, &KEYPAIR, KeyPairUse::Default)
            .await
            .unwrap();
        assert_eq!(nrows().await, 1);
    }

    #[test]
    fn test_fingerprint_from_str() {
        let res = Fingerprint::new(vec![
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
        ]);

        let fp: Fingerprint = "0102030405060708090A0B0c0d0e0F1011121314".parse().unwrap();
        assert_eq!(fp, res);

        let fp: Fingerprint = "zzzz 0102 0304 0506\n0708090a0b0c0D0E0F1011121314 yyy"
            .parse()
            .unwrap();
        assert_eq!(fp, res);

        assert!("1".parse::<Fingerprint>().is_err());
    }

    #[test]
    fn test_fingerprint_hex() {
        let fp = Fingerprint::new(vec![
            1, 2, 4, 8, 16, 32, 64, 128, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
        ]);
        assert_eq!(fp.hex(), "0102040810204080FF0A0B0C0D0E0F1011121314");
    }

    #[test]
    fn test_fingerprint_to_string() {
        let fp = Fingerprint::new(vec![
            1, 2, 4, 8, 16, 32, 64, 128, 255, 1, 2, 4, 8, 16, 32, 64, 128, 255, 19, 20,
        ]);
        assert_eq!(
            fp.to_string(),
            "0102 0408 1020 4080 FF01\n0204 0810 2040 80FF 1314"
        );
    }
}